Stereotactic radiosurgery (SRS) uses many precisely focused radiation beams to treat tumors and other problems in the brain, neck, lungs, liver, spine and other parts of the body.
It is not surgery in the traditional sense because there's no incision. Instead, stereotactic radiosurgery uses 3D imaging to target high doses of radiation to the affected area with minimal impact on the surrounding healthy tissue.
Like other forms of radiation, stereotactic radiosurgery works by damaging the DNA of the targeted cells. The affected cells then lose the ability to reproduce, which causes tumors to shrink.
Stereotactic radiosurgery of the brain and spine is typically completed in a single session. Body radiosurgery is used to treat lung, liver, adrenal and other soft tissue tumors, and treatment typically involves multiple (three to five) sessions.
When doctors use stereotactic radiosurgery to treat tumors in areas of the body other than the brain, it's sometimes called stereotactic body radiotherapy (SBRT) or stereotactic ablative radiotherapy (SABR).
Doctors use three types of technology to deliver radiation during stereotactic radiosurgery in the brain and other parts of the body:
-
Linear accelerator
(LINAC) machines use X-rays (photons) to treat cancerous and noncancerous abnormalities in the brain and other parts of the body.
LINAC machines are also known by the brand name of the manufacturer, such as CyberKnife and TrueBeam. These machines can perform stereotactic radiosurgery (SRS) in a single session or over three to five sessions for larger tumors, which is called fractionated stereotactic radiotherapy.
-
Gamma Knife
machines use 192 or 201 small beams of gamma rays to target and treat cancerous and noncancerous brain abnormalities. Gamma Knife machines are less common than
LINAC machines and are used primarily for small to medium tumors and lesions in the brain associated with a variety of conditions.
-
Proton beam therapy (charged particle radiosurgery) is the newest type of stereotactic radiosurgery and is available in only a few research centers in the U.S, although the number of centers offering proton beam therapy has greatly increased in the last few years. Proton beam therapy can treat brain cancers in a single session using stereotactic radiosurgery, or it can use fractionated stereotactic radiotherapy to treat body tumors over several sessions.
How it works
All types of stereotactic radiosurgery and radiotherapy work in a similar manner.
The specialized equipment focuses many small beams of radiation on a tumor or other target. Each beam has very little effect on the tissue it passes through, but a targeted dose of radiation is delivered to the site where all the beams intersect.
The high dose of radiation delivered to the affected area causes tumors to shrink and blood vessels to close off over time following treatment, robbing the tumor of its blood supply.
The precision of stereotactic radiosurgery means there's minimal damage to the healthy surrounding tissues. In most cases, radiosurgery has a lower risk of side effects compared with other types of traditional surgery or radiation therapy.